U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 20 results

Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Status:
Investigational
Source:
NCT00591708: Not Applicable Interventional Completed Bone Mineralization
(2004)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
Other

Class (Stereo):
CHEMICAL (MIXED)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Triethyl citrate is a triester of ethyl alcohol and citric acid. It is a colorless, odorless liquid used as a food additive (E number E1505) to stabilize foams, especially as whipping aid for egg white. Triethyl citrate is a plasticizer, that plays an important role as a dispersing aid in the processing of polylactic acid/chitin nanocrystal (PLA/ChNC) nanocomposites.
Zuclomiphene Citrate is the cis isomer of clomiphene which exhibits weak estrogen agonist activity evaluated for antineoplastic activity against breast cancer. The individual isoforms are not available commercially, but Repros Therapeutics (The Woodlands, TX, USA) has separated them and is using enclomiphene citrate (ENC) in clinical trials in men with secondary hypogonadism who wish to preserve their fertility. Zuclomiphene, possessing no oestrogen antagonism at physiological concentrations, appears to have a longer biological half-life than enclomiphene, and thus may persist for long periods in the body. At high concentrations zuclomiphene can act as an oestrogen agonist. Clomiphene citrate (CC) is often used ‘off-label’ in men who have low testosterone to raise levels, it is also useful for the restoration of sperm counts in men. CC is approved by FDA and widely used in women for induction of ovulation for several conditions. CC is a mixture of two diastereoisomers, a cis isomer, zuclomiphene citrate (ZUC, 38%) and a trans isomer, ENC (62%). The two clomiphene isomers have mixed estrogenic and antiestrogenic effects that vary among species.
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.
Status:
First marketed in 1921
Source:
Syrup of Ferrous Iodide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Iron(II) gluconate (also known as a ferrous gluconate) is used in the treatment of hypochromic anemia. The real problem of iron therapy is not the theoretical utilization of iron, or the reticulocyte response, or even the daily increase of hemoglobin. These are important only as they indicate the return of the patients' blood to normal in a reasonably short time without undue inconvenience. Most patients suffering from hypochromic anemia respond well to most forms of iron when administered in adequate dosage. For the patients who cannot tolerate the usual iron compounds, it is important to have a medication which is effective and which causes minimum disturbance. Ferrous gluconate is such a medicament.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.

Showing 1 - 10 of 20 results